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Abstract. Plankton imaging devices produce vast datasets, the processing of which can be largely accelerated through 

machine learning. This is a challenging task due to the diversity of plankton, the prevalence of non-biological classes, and 

the rarity of many classes. Most existing studies rely on small, unpublished datasets that often lack realism in size, class 15 

diversity and proportions. We therefore also lack a systematic, realistic benchmark of plankton image classification 

approaches. To address this gap, we leverage both existing and newly published, large, and realistic plankton imaging 

datasets from widely used instruments. We evaluate different classification approaches: a classical Random Forest classifier 

applied to handcrafted features, various Convolutional Neural Networks (CNN), and a combination of both. This work aims 

to provide reference datasets, baseline results, and insights to guide future endeavors in plankton image classification. 20 

Overall, CNN outperformed the classical approach but only significantly for uncommon classes. Larger CNN, which should 

provide richer features, did not perform better than small ones; and features of small ones could even be further compressed 

without affecting classification performance. Finally, we highlight that the nature of the classifier is of little importance 

compared to the content of the features. Our findings suggest that small CNNs are sufficient to extract relevant information 

to classify small grayscale plankton images. This has consequences for operational classification models, which can afford to 25 

be small and quick. On the other hand, this opens the possibility for further development of the imaging systems to provide 

larger and richer images. 

1 Introduction 

Plankton, defined as organisms unable to swim against currents, are crucial components of oceanic systems as they form the 

basis of food webs and contribute to organic carbon sequestration (Ware and Thomson 2005; Falkowski 2012). They have 30 

been the subject of scientific research for centuries (Péron and Lesueur 1810). The definition of planktonic organisms, based 

on motility and ecological niche rather than phylogeny, means that it encompasses a wide range of taxonomic clades 
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(Tappan and Loeblich 1973). Furthermore, within these clades, plankton is known to be particularly diverse (Hutchinson 

1961). Thus, planktonic organisms cover a wide range of size (from a few micrometers to several meters), shape, opacity, 

color, etc. While some planktonic taxa are ubiquitous (e.g. copepods), many are rare and sparsely distributed (e.g. fish 35 

larvae, scyphomedusae) (Ser-Giacomi et al. 2018).  

 

Historically, plankton was studied by sampling with nets and pumps followed by identification and counting by taxonomists. 

These approaches, still used today, are precise but time-demanding. Quantitative imaging and automated identification are 

now complementing traditional methods of plankton observation, with various imaging instruments developed to generate 40 

quantitative data (Lombard et al. 2019). Some of these instruments image collected samples, such as the ZooScan (Gorsky et 

al. 2010), the FlowCAM (Sieracki et al. 1998), or the ZooCAM (Colas et al. 2018). Others acquire images in situ, such as the 

Underwater Vision Profiler (UVP; Picheral et al. 2010, 2021), the In Situ Ichthyoplankton Imaging System (ISIIS; Cowen 

and Guigand 2008), the Imaging FlowCytobot (IFCB; Olson and Sosik 2007), or the ZooGlider (Ohman et al. 2019). These 

instruments vary significantly in terms of targeted size range, imaging technique, and deployment requirements, each 45 

necessitating distinct processing pipelines. Moreover, the growing availability and ease of use of these instruments are 

generating an ever-increasing volume of plankton imaging data. Most of this data is now processed through automated 

algorithms. Among the various processing tasks, detecting or identifying organisms is commonly performed using 

supervised machine learning, where an algorithm learns patterns from training data and then generalizes these patterns to 

new data. However, the software pipelines have not progressed as fast as the hardware in many cases, causing a bottleneck in 50 

data processing (Malde et al. 2020). 

 

Automated classification of plankton images is a challenging computer science task. To begin with, planktonic communities, 

and therefore the resulting image datasets, exhibit significant class imbalance. In other words, a few classes contribute to a 

substantial part of the dataset, while others classes are poorly represented. This specificity of plankton image datasets 55 

contrasts with standard benchmark image datasets where classes are almost evenly distributed: between 732 and 1300 

images for each of the 1000 classes in ImageNet (Russakovsky et al. 2015). As a consequence, rare planktonic classes are 

harder to predict for automated algorithms (Lee et al. 2016; Van Horn and Perona 2017; Schröder et al. 2019). Secondly, 

planktonic organisms encompass a wide range of taxa and form a morphologically heterogeneous group, varying in size, 

shape and opacity. More specifically, certain classes can exhibit significant intraclass variation: for instance, when 60 

morphological differences arise from life stages (e.g., doliolids) or when a class includes diverse, but rare, objects grouped 

together, as they are too uncommon to warrant separate classes (e.g., fish larvae). This variability can lead to confusion 

between classes (Grosjean et al. 2004). In addition to diverse classes of living organisms, real-world plankton image datasets 

comprise a considerable amount of non-living objects, such as marine snow aggregates or bubbles (Benfield et al. 2007); 

these classes often constitute the majority of the datasets (Ellen et al. 2019; Schröder et al. 2019; Irisson et al. 2022). Finally, 65 

plankton images collected by quantitative instruments are typically low in resolution (with edges measuring only a few 
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hundred pixels or less) and are often grayscale or with little variation in color; therefore the distinction among classes needs 

to be made from a relatively small amount of information. 

 

Historically, the automatic classification of plankton images involved training machine learning classifiers using handcrafted 70 

features extracted from the images. These manually extracted features, representative of the morphology of the objects to 

classify, aim to summarize the image content in numerical form, providing a concise representation that facilitates the 

classification process. Typical handcrafted features were global image moments (size, average gray, etc.; Tang et al. 1998), 

texture features such as gray-level co-occurrence matrices (Hu and Davis 2005), or shape features from Fourier transforms of 

the contour (Tang et al 1998). Classifiers included Support Vector Machines (SVM; Luo et al. 2004; Hu and Davis 2005; 75 

Sosik and Olson 2007), Random Forests (RF; Gorsky et al. 2010) or Multi-Layer Perceptrons (MLP; Culverhouse et al. 

1996). Several studies compared various classifiers trained on a common set of features, revealing varying results depending 

on the dataset, but ultimately no significant difference in their performance (Grosjean et al. 2004; Blaschko et al. 2005; 

Gorsky et al. 2010; Ellen et al. 2015, 2019). This suggests that the performance of classical approaches is not driven by the 

classifier as much as by the number and diversity of features that are fed to it. Indeed, classification performance usually 80 

increases with a richer set of features (Blaschko et al. 2005). Nevertheless, this may not be true if some features are 

redundant or introduce noise into the data, hence the importance of feature selection (Sosik and Olson 2007; Guo et al. 

2021). It also means that no universal set of features can be produced to identify all plankton traits across instruments, and 

the optimal set of features is therefore instrument and dataset dependent (Orenstein et al. 2022). Creating this optimal set of 

features is a challenging task, as it requires both expertise in biology (to know what to extract) and in computer science (to 85 

know how to do it); feature engineering has therefore emerged as a complete research field (Guyon and Elisseeff 2003). In 

the following, we will refer to these two-step methods (1 − handcrafted feature extraction and 2 − classification) as “classic 

approaches”, in contrast to the “deep approaches” introduced later. 

 

Among classifiers, RF is a tree-based ensemble learning method that has shown high accuracy and versatility among 90 

computer vision tasks (Hastie et al. 2009). Each decision tree in the “forest” is trained on a random subset of the data (i.e . 

bootstrap), and at each step, it considers a random selection of predictors (or features) to split the data according to labeled 

classes. The tree keeps splitting until it reaches a stopping point, such as a maximum number of splits. During prediction, 

each object passes through the tree until it reaches a terminal leaf, where it is classified based on the majority class within 

that leaf. By averaging the results from multiple trees, RF reduces the risk of overfitting (Breiman 2001). Fernández-Delgado 95 

et al. 2014, who evaluated the performances of nearly 180 classifiers on various datasets, concluded that RF outperformed all 

others. Gorsky et al. 2010 previously reached this conclusion on a ZooScan images dataset, resulting in a widespread use of 

RF classifiers later on. The IFCB data processing pipeline also switched from SVM to RF (Anglès et al. 2015). Finally, 

EcoTaxa (Picheral et al. 2017), a web application dedicated to the taxonomic annotation of images, initially implemented a 

RF classifier to classify unlabeled images. 100 
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However, since 2015, an increasing proportion of plankton image classification studies have employed deep learning 

methods, especially Convolutional Neural Networks (CNN). CNN are a kind of artificial neural network, typically used for 

pattern recognition tasks like image segmentation or classification. Their architecture is inspired from the visual cortex of 

animals, where each neuron reacts to stimuli from a restricted region (Dyck et al. 2021). In the case of an image 105 

classification task, a CNN directly takes an image as input (as opposed to classic approaches for which image features need 

to be extracted first), transforms it in various ways (the “Convolutional” part), combines the resulting features as input for a 

set of interconnected “neurons” that further reduce the information (the “Neural Network” part), and finally outputs a 

probability for the image to belong to each class; the class of highest probability is chosen as the predicted label. In contrast 

to classical approaches described above, the classification task with CNN is performed in a single step, where the feature 110 

extractor and the classifier are trained simultaneously. This process optimizes the deep features specifically for the 

classification task. Moreover, those features can be used to train any kind of classifier, often resulting in better classification 

performance than with handcrafted features (Orenstein and Beijbom 2017). 

 

CNN, first developed in 1990 (LeCun et al. 1990) and popularized in 2012 (Krizhevsky et al. 2012), were applied to 115 

plankton image classification for the first time in 2015, during a challenge hosted on the online platform Kaggle1. Since then, 

numerous studies have demonstrated the effectiveness of CNN in recognising plankton images (Dai et al. 2016; Lee et al. 

2016; Luo et al. 2018; Cheng et al. 2019; Ellen et al. 2019; Lumini and Nanni 2019; Schmid et al. 2020). On a few plankton 

images datasets, CNN have proven to reach higher prediction accuracy than the classical approach of handcrafted features 

extraction followed by classification (Orenstein et al. 2015; Kyathanahally et al. 2021; Irisson et al. 2022). Currently, 120 

research on the classification of plankton images, or images of any other type of marine organisms, is dominated by CNN 

(Irisson et al. 2022; Rubbens et al. 2023). While CNN remain a dominant method for image classification, they have been 

surpassed by vision transformers (Vaswani et al. 2017), a newer state-of-the-art approach. However, vision transformers are 

less data-efficient than CNN, requiring larger datasets and greater computational resources for effective training (Raghu et 

al. 2021). When applied to plankton image classification, vision transformers have shown only marginal improvements over 125 

CNN (Kyathanahally et al. 2022; Maracani et al. 2023). 

 

A relatively recent review (Irisson et al. 2022) revealed that over 175 papers have addressed the topic of automated 

classification of plankton images. As shown earlier, a few compared classifiers explicitly, with varying outcomes. But 

overall, these 100+ studies used different datasets, often only one per study, and most of which were not publicly released. 130 

The datasets varied in terms of number of classes and number of images, two factors that significantly affect performance. 

They also reported different performance metrics and the one most commonly reported (global accuracy) is unrepresentative 

 
1 https://www.kaggle.com/c/datasciencebowl/ 
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for unbalanced datasets (Soda 2011). Indeed, out of the 10 most cited papers in the field (Irisson et al. 2022), 8 conducted a 

plankton classification experiment, but only 4 reported per class metrics or a confusion matrix (others only report global 

metrics such as accuracy). A similar pattern is observed among the papers cited here: of the 33 papers that performed a 135 

plankton classification task, only half reported metrics beyond global metrics (Table S1). Looking at the bigger picture, it 

appears that performance has remained relatively stable over time, while the taxonomic classification tasks became 

increasingly difficult since, with richer and larger datasets, more taxa were labeled (Irisson et al. 2022). This suggests that 

classifiers improved. However, this is unquantifiable, for all the reasons above. Nonetheless, three major plankton image 

datasets have been published and used in several studies (Table 1), while a few other studies have focused on smaller 140 

versions of these datasets (Dai et al. 2016; Zheng et al. 2017; Lumini and Nanni 2019). These benchmark datasets share 

several important characteristics: they are large (though this is debatable for PlanktonSet 1.0), representative of true data 

(with minimal alteration of class distribution and inclusion of all classes, such as detritus or miscellaneous), and accessible 

online. This highlights that a move towards standardization and intercompatibility is ongoing. 

 145 

Table 1: Common plankton images benchmark datasets. 

Name References 
Imaging 

instrument 

Composition 

Relevant publications 

Images Classes 

WHOI-plankton 

Orenstein et al. 

2015; Sosik, 

Peacock, and 

Brownlee 2015 

 

IFCB 3.5 M 103 

Lee et al. 2016; Dai et al. 2017; Orenstein 

and Beijbom 2017; Cui et al. 2018; 

Kyathanahally et al. 2021, 2022; 

Maracani et al. 2023 

ZooScanNet Elineau et al. 2024 ZooScan 1.4 M 93 

Malde and Kim 2019; Schröder et al. 

2019; Kyathanahally et al. 2021, 2022; 

Maracani et al. 2023 

PlanktonSet 1.0 Cowen et al. 2015 ISIIS 30,336 121 

Dieleman et al. 2016; Py et al. 2016; 

Rodrigues et al. 2018; Uchida et al. 2018; 

Kyathanahally et al. 2021, 2022; 

Maracani et al. 2023 

 

 

Currently, despite several years of active research on the topic and while CNN have been applied to plankton images for 

more than five years (Luo et al. 2018), a systematic, global comparison of classifier performance is still lacking. Leveraging 150 
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both previously published and new published plankton imaging datasets, the motivation for this study is to provide such a 

systematic, operational benchmark that evaluates practical and accessible approaches suitable for real-world applications. 

This includes starting with a classical feature-based image classification approach and exploring a few deep-learning 

methods. All are applied on large, realistic, and publicly released datasets from six commonly used plankton imaging 

instruments, to encompass some of the variability in imaging modalities, processing pipelines, and target size ranges present 155 

in plankton imaging. For the classical approach, we use the handcrafted features natively extracted by the software 

associated with the instrument, assuming that they were engineered to be relevant for those images, and a RF classifier, 

given its popularity and performance on plankton images. For the deep approach, our base model is a relatively small and 

easy to train CNN (MobileNet V2), readily accessible to non ML specialists and below state of the art hardware. In addition 

to this benchmark, we perform additional comparisons to tackle the following questions: (i) In which conditions do CNN 160 

strongly improve classification performance over the classical approach? (ii) Is per-class weighting of errors effective to 

counter the effect of class imbalance in plankton datasets? (iii) How rich do features need to be for plankton images 

classification: are larger CNN needed or, on the contrary, can features be compressed? (iv) What are the relative effect of 

features (deep vs. handcrafted) and classifier (MLP vs. RF) on classification performance? 

2 Material and method 165 

2.1 Datasets 

2.1.1 Imaging tools 

We used datasets from six widely used plankton imaging instruments, each with distinct properties such as deployment 

methods or the size range of targeted organisms (Table 2). For a detailed review of these instruments, refer to Lombard et al. 

2019. 170 

 

Table 2: Main characteristics of the plankton imaging instruments used to collect the datasets. 

 

 

 175 

 

 

 

Instrument Deployment Covered size range Reference 

FlowCAM Ex situ (laboratory, ship) 20 to 200 µm (Sieracki et al. 1998) 

IFCB In situ (mooring) 10 to 100 µm (Olson and Sosik 2007) 

ISIIS In situ (ship-towed) < 1 mm to several cm (Cowen and Guigand 2008) 

UVP6 In situ (CTD rosette, mooring, AUV) 620 µm to a few cm (Picheral et al. 2021) 

ZooCAM Ex situ (laboratory, ship) > 300 µm (Colas et al. 2018) 

ZooScan Ex situ (laboratory) 200 µm to a few cm (Gorsky et al. 2010) 
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2.1.2 Image processing 180 

Each imaging tool had its own specific image processing and feature extraction pipeline. The motivation here is to use these 

tools “out of the box”, as other plankton ecologists would. ISIIS data was processed using Apeep (Panaïotis et al. 2022), and 

features were extracted using Scikit-image (Walt et al. 2014). The IFCB data processing relied on several MATLAB scripts 

(Sosik and Olson 2007) to segment objects and extract different types of features. The UVPapp application (Picheral et al. 

2021) was developed to process UVP6 images and extract features. Both ZooScan and FlowCAM data were processed using 185 

ZooProcess (Gorsky et al. 2010), which generates crops of individual objects together with a set of features, extracted by 

ImageJ (Schneider et al. 2012). The processing of ZooCam data was very similar to the processing of ZooScan 

and FlowCAM data (Colas et al. 2018). Thus, for all datasets, each grayscale image was associated with a set of handcrafted 

features, which depended on the instrument but were mostly global features, related to shape and gray-levels, and a label.  

2.1.3 Datasets assembling and composition 190 

All datasets were generated in a similar way: complete, real-world datasets were sorted by human operators; All 

classifications were reviewed by one independant operator for each dataset. Except for IFCB and ZooCAM, samples 

particularly rich in some rare classes were added to the dataset (all images, not just those of the class of interest). Classes still 

containing fewer than ~100 objects were merged into a taxonomically and/or morphologically neighboring class. If no 

relevant merging class could be found, objects were assigned to a miscellaneous class together with objects impossible to 195 

classify. Therefore, every single object from the original samples was included in the classification task, ensuring that the 

metrics computed on these datasets were as relevant to a real-world situation as possible. The IFCB images were taken from 

Sosik et al. 2015 (years 2011-2014); the images for other instruments were taken from EcoTaxa (Picheral et al. 2017), with 

the permission of their owners. Full references for each dataset are provided in Table 3. The number of images in the 

resulting datasets ranged from 301,247 to 1,592,196, in 32 to 120 classes (Table 3). As expected, the datasets collected in 200 

situ (ISIIS, UVP6, and IFCB) were particularly rich in marine snow and other non-living objects, resulting in a low 

proportion of plankton. 

 

To assess performance at a coarser taxonomic level, which may be sufficient in some applications and is more comparable to 

older papers tackling automated classification of plankton images (e.g. Culverhouse et al. 1996; Sosik and Olson 2007; 205 

Gorsky et al. 2010), each class was assigned to a broader group (Tables 4, S2-S6). Each class/group was then categorized as 

planktonic or non-planktonic (i.e. detritus and imaging artifacts), allowing metrics to be computed for planktonic organisms 

only, excluding the, sometimes dominant, non-living objects (Table 3). The datasets were split, per class, into 70% for 

training, 15% for validation and 15% for testing, once, before all experiments. This split ensured that the majority of the data 
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was used for training, maximizing model learning, while preserving a sufficient portion for validation and testing (at least 10 210 

objects for the rarest classes in FlowCAM and ISIIS datasets). 

 

Table 3: References and dataset composition in terms of the numbers of images, classes and handcrafted features, as well as the 

proportion of plankton (i.e. living organisms, as opposed to detritus and imaging artifacts). 

Instrument Dataset reference 

Composition 

# images [min; max per class] Classes Features % plankton 

FlowCAM (Jalabert et al. 2024) 301,247 [74 ; 69,085] 93 47 36.2 

ISIIS (Panaïotis et al. 2024) 408,166 [70 ; 321,335] 32 31 15.3 

UVP6 (Picheral et al. 2024) 634,459 [87 ; 508,817] 54 62 7.7 

ZooCAM (Romagnan et al. 2024) 1,286,590 [81 ; 204,132] 93 48 67.8 

ZooScan (Elineau et al. 2024) 1,451,745 [90 ; 241,731] 120 48 71.2 

IFCB (Sosik et al. 2015) 1,592,196 [90 ; 1,177,499] 69 72 12.6 

 215 

2.2 Classification models 

Each dataset was classified using different models, described below. The training procedure was the same for all models and 

datasets: (i) models were fitted to the training split, according to a loss metric, (ii) hyperparameters were assessed based on 

the same loss metric but computed on the independent validation split to limit overfitting, (iii) the model with optimal 

hyperparameters was used to predict the never-seen-before test split, only once, and various performance metrics were 220 

computed.  

 

The RF classifiers were implemented using Scikit-learn (Pedregosa et al. 2011). The CNN models were implemented using 

Tensorflow (Abadi et al. 2016). Training and evaluation were performed on two Linux machines, depending on the model: a 

Dell server equipped with a Quadro RTX 8000 GPU and a node of the Jean-Zay supercomputer, equipped with a V100 225 

SXM2 GPU. 

 

The code to reproduce all results is available at https://doi.org/10.5281/zenodo.14261492 (Panaïotis and Amblard 2025). 
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2.2.1 Classic approach 

A RF classifier was trained on handcrafted features extracted from images by the software dedicated to each instrument. 230 

Their number ranged from 31 to 72 depending on the software (Table 3). Most features were global features, computed on 

the whole object: morphological features were computed on the object silhouette; gray-levels features were summaries of the 

distribution of gray levels in the object. In the case of IFCB, additional texture features were extracted, in the form of gray 

level co-occurrence matrices. The diversity of features is known to be crucial for the performance of the classifiers (Blaschko 

et al. 2005).  235 

 

The loss metric used during training and validation was categorical cross-entropy, which optimizes the model's confidence in 

predicting the correct class by minimizing the difference between predicted probabilities and actual labels. While this helps 

improve accuracy, it does not directly optimize for accuracy itself, which is based solely on whether predictions are correct, 

not on the confidence of those predictions. In terms of hyperparameters, the number of features used to compute each split 240 

was set to the square root of the number of features (which is the default for a classification task, Hastie et al. 2009) and the 

minimum number of samples in a terminal node was set to 5. The optimal number of trees was investigated using a grid 

search procedure, over the values 100, 200, 350, and 500; for each, the classifier was fitted on the training split and evaluated 

on the validation split. The number of trees leading to the lowest validation loss was selected. This classic approach is 

illustrated in the first row of Fig. 1. 245 

2.2.2 Convolutional neural network 

Since our goal here is to assess the performance of easy-to-use, turnkey models that most research teams should be able to 

deploy, we chose a rather small CNN (MobileNet V2; Sandler et al. 2019), as our reference model. In addition, we also 

evaluated the performance of much larger CNN: EfficientNet V2 (Tan and Le 2021), in its S and XL versions. 

 250 

Images were resized and padded to match the input dimensions required by each CNN model (MobileNet V2: 224×224×3; 

EfficientNet V2 S: 384×384×3; EfficientNet V2 XL: 512×512×3). Since each image was originally single-channel, the 

single channel was replicated across the typical three color channels used in CNN. To preserve aspect ratio, each image was 

resized so that its longest side equaled the model's input size, then padded to a square format using the median value of the 

border pixels to maintain a homogeneous background (Orenstein et al. 2015; Ellen et al. 2019). Finally, the grayscale 255 

channel was replicated to create three identical channels and achieve the desired shape. Since training a CNN from scratch is 

time and data-consuming, we applied transfer learning by using a feature extractor pre-trained on the ImageNet dataset. The 

pre-trained feature extractor could be used as it is, as the features extracted by a model trained on generic datasets have also 

proven to be relevant for other tasks (Yosinski et al. 2014), such as plankton classification (Orenstein and Beijbom 2017; 
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Rodrigues et al. 2018; Kyathanahally et al. 2021). But they can also be fine-tuned on the target dataset to achieve better 260 

performance (Yosinski et al. 2014), which is what we did here, for each dataset. 

 

In a CNN, the typical classifier following the feature extractor is a MLP. To prevent overfitting, we added a dropout layer 

(rate = 0.5) immediately after the feature vector, preventing the model from relying on a few key neurons only (Srivastava et 

al. 2014) This was followed by a fully connected layer with either 600 or 50, depending on the model, to explore how the 265 

layer size impacts performance. Finally, the model ended with a classification head, the size of which depended on the 

number of classes to predict. This resulted in 4.5 M parameters for the smaller CNN and 208 M for the larger one. All 

models are described in Fig. 1. 

 

Data augmentation (Shorten and Khoshgoftaar 2019) was used to improve model generalization ability and performance, 270 

especially for rare classes. Images from the training set were randomly flipped vertically and horizontally, zoomed in and out 

(up to 20%), and sheared (up to 15°). Such a process increases the diversity of examples seen during training, improving 

generalization ability of the model (Dai et al. 2016). Images were not rotated because objects from a few classes had a 

specific orientation (e.g. vertical lines in the ISIIS dataset, or some organisms that have a specific orientation in datasets 

collected in situ). As for the RF, the loss metric was the categorical cross entropy. At the end of each training epoch (i.e. a 275 

complete run over all images in the training split), both loss and accuracy were computed on the validation split, to check for 

overfitting, and model parameters were saved.  

 

The feature extractor, fully connected and classification layers were trained for 10 epochs (5 epochs for EfficientNets). 

Monitoring the loss on the validation set revealed that this was sufficient for exhaustive training. The optimizer used the 280 

Adam algorithm, with a decaying learning rate from an initial value of 0.0005 and a decay rate of 0.97 per epoch. Similarly 

to the optimization of the number of trees of the RF models, the number of training epochs was optimized by retaining the 

parameters associated with the epoch presenting the minimum validation loss, hence reducing overfitting (Smith 2018). 

2.2.3 Hybrid approaches 

Finally, to discriminate the effect of the feature extractor (either handcrafted or deep) and the classifier (either a RF or a 285 

MLP), the deep features produced by the fine-tuned MobileNet V2 (n = 1792) were used to train a RF classifier. 

Furthermore, to compare RF trained on similar numbers of features and to evaluate the importance of feature richness, we 

reduce the dimension of those deep features from 1792 to 50 using a principal component analysis (PCA) fitted on the 

training set only, before feeding them into the RF classifier. These two "hybrid" approaches are illustrated in the last two 

rows of Fig. 1. 290 
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2.2.4 Class weights 

In an unbalanced dataset, well-represented classes are given more importance because examples from these classes are more 

frequent in the loss calculation, while very small classes are almost negligible. As a result, performance on these small 

classes is often very poor (Luo et al. 2018; Schröder et al. 2019). To address this imbalance, training data can be resampled 

to achieve a more balanced distribution (e.g. oversampling poorly represented classes and/or undersampling dominant 295 

classes), a set of methods known as dataset-level approaches (Sun et al. 2009). Alternatively, the classifier can be tuned so 

that the misclassification cost is higher for small classes (i.e. algorithm-level approaches). Although both types of methods 

were shown to improve classification performance (at least for a binary classification task, McCarthy et al. 2005), altering 

the distribution of the training data may generate poor results when predicting new data with a different distribution 

(Moreno-Torres et al. 2012; González et al. 2017). Thus, a class-weighted loss was implemented to increase the cost of 300 

misclassifying rare plankton classes. Class weights can be set as the inverse frequency of classes, or smoother alternative 

such as root or fourth-root of the inverse frequency (Cui et al. 2019), which gives, for class i: 

𝑤𝑖 = (
max(𝑐)

𝑐𝑖
)
0.25

 

The effect of these per-class weights was investigated by training both weighted and non-weighted versions of a RF on 

native features and of the reference CNN (Mob + MLP600; Fig. 1). 305 
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Figure 1: Description of the models tested. Each model consists of a feature extractor and a classifier, and is named accordingly. 

For each model, the brown line represents the feature vector and its length is indicated. For MLPs, the number in subscript gives 

the size of the fully connected layer. RF = Random Forest, MLP = Multilayer Perceptron, NW = no weights (i.e. learning not 

weighted by class size), PCA = Principal Component Analysis. The colors defined here are consistent with other figures. The 310 
MobileNet V2 with a fully connected layer of size 600 (Mob + MLP600, in dark blue) will be considered as a reference model and 

repeated in all figures. 
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2.2.5 Model evaluation 

After each model in Fig. 1 was trained and tuned for either the number of trees (for classical models) or the number of 315 

epochs (for CNN) on each dataset, models were evaluated on the test split, to which they had not been previously exposed. 

Usual metrics were computed: accuracy score (percentage of objects correctly classified), balanced accuracy, class-wise 

precision (percentage correct in the predicted class) and recall (percentage correct within the true class). 

 

In datasets with strong class imbalance − such as many plankton datasets − accuracy alone can be misleading. For instance, 320 

in a highly unbalanced dataset where 99% of objects belong to a single class, a model that classifies every object into that 

class would be completely uninformative but would still achieve an accuracy of 99%. Similarly, in an 11-class dataset with 

one dominant class comprising 90% of the data (and each of the other classes making up only 1%), a classifier that randomly 

assigns classes according to these proportions would still yield an accuracy of approximately 81%, despite offering little real 

predictive value. Therefore, to better gauge the quality of our models on unbalanced datasets, the same performance metrics 325 

were also computed on the output of such a random classifier. In addition, the balanced accuracy score, computed as the 

simple average of per-class recall scores, was also computed, as it is a better estimate of model performance in such a 

scenario (Kelleher et al. 2020). 

 

Furthermore, in the case of plankton datasets, the dominant classes are often not plankton (detritus, mix, etc.). The accuracy 330 

value is mostly driven by these classes (Orenstein et al. 2015) and, therefore, does not provide any information about the 

performance on plankton classes, which are often the subject of study. To focus on these classes, we also computed the 

average of precision and recall per class, weighted by the number of objects in the class, but using only plankton classes. 

Averaged plankton recall gives a direct indication of the proportion of planktonic organisms that were correctly predicted. 

Averaged plankton precision gives an indication of how “pure” the predicted plankton classes are. 335 

3 Results 

3.1 Training time 

Training and evaluation times were always shorter for the classical approach (using pre-extracted handcrafted features and a 

RF classifier) than for CNN (which combined feature extraction and classification). Running on 12 CPU cores, gridsearch, 

training, and evaluation for the RF classifier based on native features took less than an hour for the smallest dataset (ISIIS, 340 

~400,000 objects) and a few hours for the IFCB dataset (~1.6 M objects). The extraction of handcrafted features could not be 

reliably timed, as it is performed using very different software, but is usually in the order of hours for about a million 

objects. In contrast, it took 5h to train the MobileNet V2 + MLP600 for 10 epochs on the ISIIS dataset but 15h for the same 

number of epochs on the IFCB dataset, using a Quadro RTX 8000 GPU. 
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3.2 Benchmark performance of MobileNetV2, our reference model 345 

On the six large and realistic plankton image datasets included in this study, a small CNN model (MobileNetV2) trained with 

per-class weights achieved strong performance while remaining easy to implement. The balanced accuracy across all classes 

ranged from 79% to 90%, with plankton class precision and recall reaching 80%, except for ISIIS and UVP6 datasets. These 

benchmark results are further compared to other approaches in the following sections. 

 350 

Table 4: Classification report for detailed classes in the ZooScan dataset. Reported values are F1-scores. 

Class Grouped Nat + RF 
Mob + 

MLP600 
Eff S + MLP600 

Mob + PCA + 

RF 

Plankton 

Actinopterygii Actinopterygii 23.8 87.9 91.6 94.5 

egg<Actinopterygii Actinopterygii 35.3 88.3 88.3 90.5 

Neoceratium Alveolata 0.0 92.3 89.5 92.7 

Noctiluca Alveolata 54.6 92.7 90.2 92.5 

Amphipoda Amphipoda 0.0 82.7 86.1 90.1 

Cumacea Amphipoda 30.4 91.2 94.0 94.8 

Hyperiidea Amphipoda 26.1 90.2 93.4 92.8 

Annelida Annelida 21.3 85.0 85.9 87.5 

larvae<Annelida Annelida 0.0 72.9 75.2 75.0 

part<Annelida Annelida 35.7 86.2 85.4 88.2 

Tomopteridae Annelida 7.0 92.1 91.8 89.6 

Fritillariidae Appendicularia 28.1 89.7 88.9 90.5 

Oikopleuridae Appendicularia 39.4 94.2 94.5 95.0 

tail<Appendicularia Appendicularia 48.6 85.2 84.4 86.9 

trunk Appendicularia 0.0 67.3 67.1 72.4 

Chaetognatha Chaetognatha 75.4 97.3 97.6 97.9 

head<Chaetognatha Chaetognatha 0.0 56.9 69.8 72.4 

tail<Chaetognatha Chaetognatha 15.3 73.0 75.0 77.6 

cirrus Cirripedia 9.1 68.5 59.5 68.6 

cypris Cirripedia 0.0 87.9 92.8 91.8 

nauplii<Cirripedia Cirripedia 0.0 92.2 92.4 94.3 

Evadne Cladocera 17.1 96.8 97.1 97.4 

Penilia Cladocera 39.9 96.8 97.0 97.7 

Podon Cladocera 0.0 88.3 87.8 87.6 

Acartiidae Copepoda 24.2 95.5 95.4 95.9 
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Calanidae Copepoda 33.0 96.3 96.4 97.0 

Calanoida Copepoda 57.6 94.3 94.3 94.9 

Calocalanus pavo Copepoda 2.7 84.2 85.5 89.9 

Candaciidae Copepoda 11.9 95.5 95.1 95.5 

Centropagidae Copepoda 32.8 94.6 94.6 95.1 

Copilia Copepoda 0.0 88.5 94.2 95.1 

Corycaeidae Copepoda 28.5 96.3 96.6 97.2 

Eucalanidae Copepoda 16.8 88.4 90.2 91.3 

Euchaetidae Copepoda 21.3 94.2 94.1 96.2 

Haloptilus Copepoda 31.8 95.6 95.4 96.5 

Harpacticoida Copepoda 0.2 90.7 92.7 93.1 

Heterorhabdidae Copepoda 0.0 87.6 86.2 89.3 

Metridinidae Copepoda 14.7 94.6 94.6 95.7 

Oithonidae Copepoda 59.2 96.6 96.6 97.0 

Oncaeidae Copepoda 9.1 93.4 94.2 94.8 

Pontellidae Copepoda 54.8 97.0 96.5 98.6 

Rhincalanidae Copepoda 52.0 70.2 78.3 85.3 

Sapphirinidae Copepoda 0.0 91.8 91.2 91.9 

Temoridae Copepoda 23.4 96.0 96.0 96.9 

Ctenophora Ctenophora 0.0 67.0 72.3 81.1 

cyphonaute cyphonaute 29.8 98.4 98.5 98.4 

larvae<Luciferidae Decapoda 16.4 95.2 95.4 97.9 

larvae<Porcellanidae Decapoda 64.2 96.2 97.4 98.3 

megalopa Decapoda 27.9 95.9 95.2 96.7 

protozoea<Penaeidae Decapoda 0.0 84.2 87.6 92.3 

protozoea<Sergestidae Decapoda 0.0 78.5 71.7 81.0 

zoea<Brachyura Decapoda 40.0 95.7 96.7 97.5 

zoea<Galatheidae Decapoda 1.3 88.1 88.3 89.3 

Doliolida Doliolida 37.7 93.2 92.4 93.8 

larvae<Echinodermata Echinodermata 0.0 80.6 76.6 84.0 

pluteus<Echinoidea Echinodermata 26.8 86.7 87.8 89.7 

pluteus<Ophiuroidea Echinodermata 13.4 91.0 92.5 92.0 

Eumalacostraca Eumalacostraca 61.3 91.4 91.7 92.4 

Eumalacostraca potentially protozoea Eumalacostraca 26.1 83.0 81.4 83.8 

larvae<Mysida Eumalacostraca 0.0 72.7 88.9 82.8 

Mysida Eumalacostraca 76.5 86.4 91.6 94.4 

Harosa Harosa 1.6 76.7 75.1 74.2 
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Isopoda Isopoda 67.1 98.8 97.6 98.2 

Atlanta Mollusca 0.0 84.8 83.9 90.9 

Bivalvia<Mollusca Mollusca 12.6 95.0 95.5 95.8 

Cavolinia inflexa Mollusca 58.2 97.5 96.2 97.2 

Creseidae Mollusca 47.4 93.7 94.0 94.2 

Creseis acicula Mollusca 67.6 94.5 94.4 94.9 

Cymbulia peroni Mollusca 0.0 80.0 72.7 76.5 

egg<Mollusca Mollusca 1.5 76.7 77.0 75.7 

Gymnosomata Mollusca 60.4 92.8 95.7 95.6 

Limacinidae Mollusca 25.3 96.1 96.3 96.9 

part<Mollusca Mollusca 2.2 61.9 55.3 60.9 

Actiniaria other_Cnidaria 16.7 93.0 93.3 89.8 

ephyra other_Cnidaria 36.7 86.4 91.5 91.3 

Hydrozoa other_Cnidaria 13.6 74.6 75.1 78.4 

Obelia other_Cnidaria 18.2 85.9 85.7 88.5 

part<Cnidaria other_Cnidaria 0.0 14.8 44.0 44.6 

calyptopsis other_Crustacea 12.2 93.5 94.3 93.3 

larvae<Stomatopoda other_Crustacea 46.5 95.6 96.5 98.4 

metanauplii<Crustacea other_Crustacea 0.0 81.8 85.3 93.7 

nauplii<Crustacea other_Crustacea 4.6 91.5 91.8 93.3 

Ostracoda other_Crustacea 46.4 96.4 96.7 97.6 

part<Crustacea other_Crustacea 2.6 63.2 65.3 68.2 

Pyrosomatida Pyrosomatida 22.2 93.9 95.4 94.8 

Foraminifera Rhizaria 25.7 89.7 89.8 90.4 

Phaeodaria Rhizaria 55.1 96.6 96.2 96.7 

endostyle Salpida 16.0 60.4 58.2 61.4 

juvenile<Salpida Salpida 0.0 82.3 84.0 81.9 

nucleus Salpida 11.5 68.6 71.4 74.7 

Salpida Salpida 42.1 92.9 92.3 93.4 

Bassia Siphonophorae 0.0 57.1 50.0 56.0 

bract<Abylopsis tetragona Siphonophorae 34.9 91.2 89.0 89.9 

bract<Diphyidae Siphonophorae 12.0 85.9 86.0 87.9 

eudoxie<Abylopsis tetragona Siphonophorae 0.0 90.3 92.1 89.6 

eudoxie<Diphyidae Siphonophorae 2.9 84.3 86.9 89.9 

gonophore<Abylopsis tetragona Siphonophorae 12.1 90.9 90.2 93.5 

gonophore<Diphyidae Siphonophorae 30.0 93.2 93.4 94.2 

nectophore<Abylopsis tetragona Siphonophorae 20.7 88.6 87.6 91.7 
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nectophore<Diphyidae Siphonophorae 63.1 92.9 92.2 93.1 

nectophore<Hippopodiidae Siphonophorae 18.2 73.3 81.1 85.7 

nectophore<Physonectae Siphonophorae 59.5 87.4 81.8 84.7 

part<Siphonophorae Siphonophorae 0.0 66.8 67.4 69.5 

Physonectae Siphonophorae 0.0 43.5 48.5 66.7 

siphonula Siphonophorae 19.2 90.3 86.1 89.0 

Coscinodiscus Stramenopiles 41.2 97.3 96.8 97.2 

actinula<Solmundella bitentaculata Trachylina 0.0 68.8 78.9 82.4 

Aglaura Trachylina 57.9 91.8 91.7 93.0 

Liriope<Geryoniidae Trachylina 0.0 52.0 73.0 78.7 

Rhopalonema velatum Trachylina 49.1 85.6 85.2 87.2 

Solmundella bitentaculata Trachylina 3.5 67.4 70.6 73.4 

average   22.9 85.5 86.6 88.5 

Non plankton 

artefact artefact 76.7 80.8 80.0 79.8 

badfocus<artefact badfocus 19.6 63.1 62.9 63.1 

bubble bubble 19.0 92.2 91.0 91.2 

detritus detritus 55.2 82.9 81.4 81.6 

fiber<detritus fiber 62.9 74.6 74.7 74.8 

Insecta Insecta 27.1 84.3 86.9 89.6 

egg<other other_egg 59.7 92.2 91.0 92.4 

other<living other_living 16.3 39.2 59.3 73.7 

seaweed seaweed 35.3 68.0 68.2 66.3 

average   41.3 75.2 77.3 79.2 
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3.3 Rare classes are where CNN outperform classical approaches 

 355 

Figure 2: Performance comparison between a small CNN (Mob + MLP600), a RF trained on handcrafted features and a random 

classifier on all six datasets. Both class weighted and non-weighted versions of the models were evaluated. The models are 

described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after 

regrouping objects into broader ecological groups. 

In terms of overall accuracy, the CNN performed only slightly better on all datasets than the classical approach of using 360 

handcrafted features and an RF classifier (+3.5% to +43.8% depending on the dataset; +15.1% on average) (Fig. 2). The use 

of class weights slightly decreased the accuracy of both the deep and classical approaches, as it focused training on small 

classes and less on large classes, which account for more in the computation of accuracy. Note that a random classifier 

achieved 55%, 61% and 63% accuracy on the detritus-dominated IFCB, ISIIS and UVP6 datasets, respectively. While the 

accuracies of all non-random models were higher, they must be gauged in terms of the increase over the random model and 365 

not in absolute terms. 

 

Deep approaches showed much higher balanced accuracies than classical ones, as well as improved precisions and recalls 

averaged over plankton classes; this was true both with and without weights (Fig. 2). The balanced accuracy of the random 

classifier was very poor in all datasets, confirming that this metric is more relevant in datasets with many small classes. The 370 

improvements brought by CNN were associated with the fact that they performed better on non-dominant classes (e.g. 

Tables 4, S2-S6). 
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Class weights improved balanced accuracy for both deep (up to +8.2% for the UVP6 dataset) and classical approaches (up to 

+18.0% for the UVP6 dataset). Thus, as expected, giving more weight to small classes improved their learning by the 375 

classifier, but this was especially true for RF models. Weighting decreased plankton precision for both models, on all 

datasets: errors involving samples from large classes were less penalized, resulting in a greater contamination of plankton 

classes, i.e. lower precision. Symmetrically, the use of class weights improved the recall of plankton classes for all models 

(except MobileNet on the FlowCam dataset). Again, this improvement is expected since plankton classes, which typically 

contain fewer images than non-plankton ones (e.g. detritus), are given more weight, reducing the number of false negatives, 380 

i.e. increasing recall. Since applying class weights improved detection of underrepresented classes (primarily plankton), only 

the weighted versions of each model will be evaluated in the subsequent analysis. 

3.4 Small CNN are sufficient for plankton image classification 

 

Figure 3: Performance comparison between our reference CNN (Mob + MLP600), a CNN with a larger feature extractor (Eff S + 385 
MLP600 and Eff XL + MLP600) and a MobileNet followed by a smaller MLP (Mob + MLP50) on all six datasets. The models are 

described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after 

regrouping objects into broader ecological groups. 

Using a larger and supposedly richer feature extractor, such as EfficientNet S or EfficientNet XL, did not markedly improve 

performance metrics (Fig. 3). If anything, performance was lower with EfficientNet XL, likely due to immediate overfitting 390 
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after the first epoch, causing the model to adhere too closely to the training data and impair its ability to generalize. This may 

be due to the relatively small training dataset, which, in proportion to the number of parameters in the model, increases the 

risk of overfitting. The effect was especially pronounced with the UVP6 dataset, which is not only small (~635,000 images) 

but also has a low proportion of plankton images (7.7%); both balanced accuracy and plankton-specific metrics (average 

precision and recall) were notably impacted. On the other hand, compressing the features before classification, by using a 395 

fully connected layer of size 50 instead of 600 after the MobileNet feature extractor, did not reduce classification 

performance (Fig. 3). Both results suggest that a relatively small model is enough to extract all informative content from the 

small, grayscale plankton images in these datasets. 

3.5 The features are more important than the classifier 

 400 

Figure 4: Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a 

MobileNet V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on 

all six datasets. The models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped 

bars show the value after regrouping objects into broader ecological groups. 

Moving from native features to MobileNet deep features before the RF classifier significantly increased all classification 405 

metrics (Fig. 4). On the contrary, performance stayed the same when the MLP600 classifier was replaced by a RF after the 

same MobileNet feature extractor. This suggests that the classifier itself is of relatively little importance; rather, it is the 

https://doi.org/10.5194/essd-2025-309
Preprint. Discussion started: 6 June 2025
c© Author(s) 2025. CC BY 4.0 License.



21 

 

quality of the features that determines performance. Since features are optimized during CNN training, their quality aligns 

with the patterns the algorithm learns to improve classification accuracy. 

 410 

Finally, compressing features with a classification-agnostic dimension reduction method (PCA here) had very little effect on 

classification performance (Fig. 4). This supports the idea, stated in the previous section, that the information required to 

classify the relatively small, gray-scale plankton images captured by the instruments considered here can be efficiently 

summarized in only a few numbers (50 here). This opens operational possibilities since the feature extractor, the feature 

compressor and the classifier can be separated. 415 

3.6 Performance on coarser groups 

 

Figure 5: Density distribution (i.e. continuous histogram) of the difference in performance metrics per class when going from RF 

on native features to different deep models (colors), on the ZooScan datasets, at two taxonomic levels (rows). 

Regrouping classes into broader ecological groups improved all performance metrics across all datasets and approaches (Fig. 420 

2, 3, and 4), as it made the classification task easier. However, it is important to note that our method − regrouping classes 

after training on detailed classes − differs from retraining a model on grouped classes alone. In the latter approach, 

regrouping would increase the number of examples within each group, likely enhancing performance. Yet, this could also 

introduce more diversity within each class, sometimes referred to as “within-class subconcepts” (He and Garcia 2009), 
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which might reduce accuracy in certain, morphologically diverse, groups (e.g. both Appendicularia bodies and houses being 425 

labeled as Appendicularia). This decrease in performance is especially evident in miscellaneous classes containing objects 

that could not be assigned to other categories (Table 4, S2 - S6). The performance increase between detailed and coarse 

classes was larger for classical approaches, particularly on the ZooCam and ZooScan datasets (Fig. 2). This highlights the 

fact that classical approaches often confused fine-scale taxa, comprised within larger groups. A good example is Copepoda, 

which has 22 subclasses in the ZooCam dataset and 20 in the ZooScan dataset. The classification of some of these ~20 430 

classes was often poor with classical models while the classification of Copepoda, as a whole, was rather good. Since 

Copepoda represented a large percentage of the images in each dataset, 38% and 34% respectively, classifications metrics 

significantly improved when they were grouped. 

 

The other side of the same coin is that performance improvements when going from a RF on native features to different deep 435 

models were larger when the taxonomic level was more detailed. In Fig. 5, most classes show better performance with the 

deep models (to the right of zero), and the increase is more pronounced with detailed classes (top) than on regrouped ones 

(bottom), for precision in particular. In other words, deep models beat classical ones on almost all classes (most differences 

in per-class metrics were above zero) but, on datasets with more and smaller classes, CNN beat classical approaches more 

often and by a wider margin than on coarser datasets. This further supports that CNN are better than classical approaches 440 

specifically at classifying rare classes. 

4 Discussion 

4.1 Costs and benefits of using CNN 

In terms of accuracy alone, CNN did not appear to offer a significant performance improvement over the classical approach 

of handcrafted feature extraction followed by a RF classifier. However, the high scores of a purely random classifier on this 445 

metric show how flawed it can be on unbalanced datasets. Instead, balanced accuracy (Kelleher et al. 2020) and metrics on 

plankton classes only both showed that CNN performed better in classifying objects, especially in low abundance classes 

(and when class weights were used). This was further confirmed by the fact that the difference between CNN and the 

classical approach was lower when classification was performed at a coarser taxonomic level. This makes the use of 

pretrained CNN particularly relevant for plankton images classification, which are particularly diverse, contain many small 450 

classes and in which the dominant classes are often composed of various detritus and artifacts. 

 

Giving more weight to poorly represented classes resulted in better performance, especially for RF. One plausible 

explanation would be that weighted RF (Chen et al. 2004) actually make use of class weights twice: weights are used to 

compute the criterion to generate the splits (entropy in our case) when building the tree; weights are also used when voting 455 
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for the majority class in terminal nodes. On the other hand, class weights are only used to compute a weighted loss in CNN 

(Cui et al. 2019). 

 

While CNN took longer to train than RF in terms of overall training duration, the comparison is not straightforward. First, 

training a RF model requires extracting features from the images beforehand. This feature extraction is coded, not trained, so 460 

this part cannot be directly compared. Additionally, it can be challenging to know when feature extraction is truly complete,  

as the optimal set of features often depends on the specific dataset and task. But even in terms of pure evaluation (i.e. 

extracting features and predicting the class of new images), the computation of some handcrafted features can take a non-

negligible amount of time and a CNN may prove faster, notably thanks to the use of GPUs by the underlying software 

libraries (Chellapilla et al. 2006). Additionally, the training time of CNN depends heavily on the number of parameters. For 465 

instance, our lightweight model (MobileNet V2) trained in under 100 hours, which is fast compared to larger models (Zebin 

et al. 2019). Since lightweight CNN models demonstrated performance comparable to larger ones for plankton classification 

tasks, they present an appealing choice: their computational demands are often modest and compatible with most recent 

computers. Finally, a metric that may be more relevant than computational time for many applications is the total time 

investment of the scientific team, including model setup, training, and output validation. In this respect, we argue that CNN 470 

are actually simpler: deep learning libraries such as Tensorflow (Abadi et al. 2016) or Pytorch (Paszke et al. 2019) are 

becoming easier to code in, no specific image processing knowledge is required to use them (while extracting relevant 

handcrafted features does require such skills), the final model packages the whole pipeline (from image pre-processing to 

classification) and can be deployed on various devices. And as GPU resources become increasingly available for the 

scientific community, these powerful tools become more accessible (Malde et al. 2020). 475 

 

Finally, our results highlight the efficacy of both CNN and classical methods for accurate prediction of well-represented 

plankton classes. However, rare classes still require manual validation by a taxonomist. Importantly, improved prediction 

quality achieved by CNN compared to classical approaches is likely to save time by reducing the need for prediction 

corrections, as reported by Irisson et al. (2022). 480 

4.2 Importance of the quality and number of features 

Models using a CNN feature extractor, which generated features much more numerous than the handcrafted ones (>1000 vs. 

~50), performed better as expected from the literature (Orenstein and Beijbom 2017). Increasing the size of the feature 

extractor, hence yielding potentially richer features (keeping their number in the same order of magnitude: 1792 for the 

MobileNet V2 vs. 1280 for the EfficientNet V2) did not lead to a significant improvement in classification performance; but 485 

it did lengthen the training time. Reducing the number of features from a CNN to an amount similar to the number of 

handcrafted features (50), using PCA or compression within a small fully connected layer, did not significantly affect 

classification performance either. These results show that the richness and diversity of features is important, but only to a 
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certain extent with plankton images. Although features from CNN cannot be individually interpreted, texture features were 

shown to be important for image classification by CNN (Baker et al. 2018). Moreover, visualization techniques have been 490 

developed to provide insights into the convolutional layers of CNN, revealing that convolutional layers detect patterns like 

edges and textures (Zeiler and Fergus 2014). By contrast, most handcrafted feature sets were poor in texture-related features, 

which may explain their lower performance.  

 

The fact that the number of features can be greatly reduced (from 1792 to 50, a 36-fold reduction, in our case; from 216 to 495 

25, an 8-fold reduction, in Guo et al. 2021) suggests that CNN can only extract a limited amount of relevant information 

from plankton images, which are typically of small size (~100×100 pixels for the average Zooscan image) and often 

grayscale.  

 

Therefore, improvements in classification accuracy are more likely to come from richer images than from larger models. For 500 

example, color cameras, such as those used in the planktoscope (Pollina et al. 2022) or the Scripps Plankton Camera 

(Orenstein et al. 2020b), should capture more information by using multiple channels. Beyond color, additional fluorescence 

channels can be obtained using environmental high content fluorescence microscopy, enriching the information content of 

images (Colin et al. 2017); but this method can only be applied ex situ. These enhanced imaging methods, however, require 

greater storage and processing capacity. Our findings also opens an opportunity to simplify plankton image classification 505 

models, by performing a wise feature selection through recursive feature elimination for example (a backward selection of 

less informative features until only informative features remain; Guyon et al. 2002; Guo et al. 2021). Dimension reduction 

techniques, such as PCA (Legendre and Legendre 2012), can also be used to remove both correlations and noise in the 

features. The combination of deep feature extraction, dimension reduction, and a robust classifier, such as RandomForest, is 

lightweight and quick to train, yet yields high quality results (Fig. 4). This approach is now implemented in the EcoTaxa web 510 

application (Picheral et al. 2017). 

 

The similar performance between a full CNN and a deep feature extractor combined with a RF classifier (Fig. 4) suggests 

that the nature of the features is much more important than the nature of the classifier. These results are consistent with those 

comparing different classifiers on handcrafted features, where no significant differences could be highlighted (Grosjean et al. 515 

2004; Blaschko et al. 2005; Gorsky et al. 2010; Ellen et al. 2015). Still, in highly unbalanced datasets (IFCB, ISIIS and 

UVP6), the plankton precision was slightly higher with the RF than with the MLP600, reflecting a lower contamination of 

plankton classes by dominant detritus. Its stronger sensitivity to class weights is another possible explanation in our case.  

4.3 Alternative approaches for plankton image classification 

A potential drawback of CNN is that they may not account for the real size of objects, since all images are rescaled to the 520 

same dimensions before input. One solution to capture size would be not to scale down images larger than the input 
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dimension but to pad the smaller ones with the background color. However, very small objects may be reduced to just 1 

pixel after a few pooling layers and all information in the original image could be lost. Another common solution would be 

to concatenate size information from handcrafted features (e.g. area, Feret diameter) or simply the image diagonal size to one 

of the fully connected layers to create a model that accounts for both image aspect and object size. Still, despite the a priori 525 

relevance of size to recognize plankton taxa, such approaches do not necessarily provide a large improvement in 

classification performance: Kerr et al. (2020) report a small improvement when geometric features are concatenated, while 

Kyathanahally et al. (2021) report a negligible gain. Ellen et al. (2019) evaluated the effect of concatenating different types 

of "metadata" (geometric, geotemporal and hydrographic) to fully connected layers; again, geometric features did not 

improve model performance. One possible explanation is that deep features already capture the essential information needed 530 

for classification, making additional geometric features redundant. However, adding geotemporal and hydrographic features 

(individually or combined) enhanced prediction performance, which is unsurprising given the patchy nature of plankton 

organisms. Plankton taxa tend to exhibit positive correlations within groups (Greer et al. 2016; Robinson et al. 2021), and are 

often associated with specific environmental parameters—a relationship that machine learning algorithms can leverage (e.g., 

relating plankton biomass to environmental conditions, as shown in Drago et al. 2022). However, one should keep in mind 535 

that incorporating metadata features during training may hinder subsequent analyses linking these organisms to their 

environment, since the classifier learned a correlation between the abundance of some organisms and some environmental 

conditions from the training set, and will therefore induce it in its predictions.  

 

As highlighted above, plankton datasets are often highly unbalanced, with few objects in plankton classes while the largest 540 

classes often consist of non-living objects such as marine snow. There are both “algorithm-level” and “data-level” methods 

for dealing with class imbalance (Krawczyk 2016), which can be used separately or simultaneously. Algorithm-level 

methods include the use of class weights to give more importance to poorly represented classes in the loss computation (Cui 

et al. 2019); like we did here. Another algorithm-level method is to use a different loss function, such as sigmoid focal cross 

entropy (Lin et al. 2018), which penalizes hard examples (small classes) more than easier ones (large classes). We tested 545 

implementing focal cross entropy instead of a categorical cross entropy for our MobileNet V2, but it did not significantly 

change performance. Data-level methods include oversampling small classes and undersampling large classes, thereby 

rebalancing the distribution of classes in the training set (Krawczyk 2016). While this practice often improves performance 

on a test set to which the same modifications are applied, it can lead to poor performance when evaluating the model on a 

real, therefore unbalanced, dataset, because the model has learned an unrepresentative class distribution from the training set. 550 

This problem is known as “dataset shift” (Moreno-Torres et al. 2012). Typically, using a model trained on an idealized 

training set to classify objects from a new, real dataset leads to poor prediction quality (González et al. 2017). Similarly, a 

model trained for specific conditions (such as location, depth, or time) may fail to generalize to images acquired under 

different circumstances. All types of classification models, including cutting-edge architectures like vision transformers, are 
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susceptible to dataset shift (Zhang et al. 2022). Today, there is no obvious solution to deal with dataset shift in classification 555 

tasks and other approaches, such as quantification, should be considered (González et al. 2019; Orenstein et al. 2020a). 

 

The rarity of some plankton classes means that some classes will inevitably be missing in the training set.Since a classifier is 

trained with a fixed list of classes, all objects will be predicted in one of those classes and new, unknown, ones will be 

missed. In these situations, unsupervised or semi-supervised approaches, which can still exploit the rich features produced by 560 

CNN but do not target a fixed set of classes, may be preferable (Malde and Kim 2019; Schröder et al. 2020). 

5 Conclusion and perspectives 

In summary, a small CNN achieved strong performance at plankton image classification across six realistic plankton image 

datasets, while being easy to apply. It unsurprisingly outperformed the classical approach of extracting a small number of 

handcrafted features and using a RF classifier, particularly for rare classes.  More specifically, the content of the features 565 

played a key role in driving these differences, while the choice of classifier had little impact. Surprisingly, using a large 

CNN did not lead to better classification performance than a much smaller one and that deep features could be quite heavily 

compressed without loss of performance. This is likely related to the fact that plankton images, which are typically small and 

grayscale, are poor in informative content for CNN. These findings suggest that improvements in imaging systems 

themselves could enhance classification performance. Finally, in agreement with previous findings, our work highlights the 570 

limitations of using global accuracy to evaluate classification performance on unbalanced datasets, such as plankton imaging 

datasets. Instead, metrics that emphasize the classes of interest − often the minority classes in plankton datasets − should be 

prioritized. 

 

The results presented here are in line with the shift towards the use of deep learning models for plankton classification tasks 575 

(Rubbens et al. 2023), which was made possible by advances in computational performance through easier access to 

dedicated hardware, the release of sufficiently large datasets, and the development of turnkey deep learning libraries such as 

Tensorflow (Abadi et al. 2016) or Pytorch (Paszke et al. 2019). Datasets in this study are made publicly available to facilitate 

future benchmarking of new classification methods. 

Data availability 580 

The datasets used in this study are available online: IFCB (Sosik et al. 2015) at https://doi.org/10.1575/1912/7341; ISIIS 

(Panaïotis et al. 2024) at https://doi.org/10.17882/55741; FlowCAM (Jalabert et al. 2024) at 

https://doi.org/10.17882/101961; UVP6 (Picheral et al. 2024) at https://www.seanoe.org/data/00908/101948/; ZooCAM 
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(Romagnan et al. 2024) at https://doi.org/10.17882/101928; and ZooScan (Elineau et al. 2024) at 

https://doi.org/10.17882/55741. 585 
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